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Sub critical convective instability 
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This paper elaborates on the assertion that energy methods provide an always 
mathematically rigorous and a sometimes physically precise theory of sub- 
critical convective instability. The general theory, without explicit solntions, is 
used to deduce that the critical Rayleigh number is a monotonically decreasing 
function of the Nusselt number, that this decrease is very slow if the Nusselt 
number is large, and that a fluid layer heated from below and internally is 
definitely stable when RA < R2(N,) > 1708/(N,+ 1) where N ,  is a heat source 
parameter and 3 is a critical Rayleigh number. This last problem is also solved 
numerically and the result compared with linear theory. The critical Rayleigh 
numbers given by energy theory are slightly less than those given by linear 
theory, this difference increasing from zero with the magnitude of the heat-source 
intensity. To previous results proving the non-existence of subcritical in- 
stabilities in the absence of heat sources is appended this result giving a narrow 
band of Rayleigh numbers as possibilities for subcritical instabilities. 

1. Introduction 
The energy method judges stability or instability of a given fluid motion by 

whether the energy of a disturbance of the given motion grows or decays. If the 
values of certain stability parameters are below critical values, the energy 
decreases and the hydrodynamic system is called stable. Reynolds (1895) used 
an equation for the global kinetic energy of simple perturbation flows to estimate 
values of the critical Reynolds number. Orr (1907) used the same equation to 
formulate a variational problem for finding the critical Reynolds number. The 
calculation procedures and the results associated with this older use of the energy 
method are summarized by Bateman, Dryden & Murnaghan (1933). These early 
results of the energy method gave such conservative estimates for the critical 
Reynolds number, that the method was neglected for many years. 

The modern theory of energy dates from the work of Thomas (1942) and 
Serrin (1959). In  the modern theory one considers the global energy of a difference 
motion. The global energy, kinematic conditions and boundary constraints are 
used in two lines of deduction. The first of these leads to a universal stability 
criterion, universal in the sense that specific details of the basic motion and 
details of the flow geometry need not be completely specified. A second line of 
deduction leads to the formulation of a maximum problem and achieves a sharper 
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result by making more efficient use of known details of the basic flow. The pro- 
cedure is elegantly developed in Serrin’s (1959) paper. The results are valuable 
because they apply to a difference motion and, therefore, guarantee stability to 
finite disturbances. It is of importance that the method can give results which are 
not too conservative, as is obvious from Serrin’s (1959) calculation of the 
stability limits for Couette flow between rotating cylinders. That even stronger 
results are possible was demonstrated in Joseph‘s (1965, 1966; hereafter referred 
to as I and 11) extension of the method to accommodate convective motions 
governed by the non-linear equations of Boussinesq. It is with these convective 
motions, particularly with those which start from rest, that the most powerful 
and physically meaningful results of the energy method can be associated. These 
results are briefly listed below: 

(i) There exists a neighbourhood of the origin of the Rayleigh-Reynolds 
number plane in which all Boussinesq flows which satisfy certain natural 
boundary conditions and which can be contained in a sphere of a diameter d are 
universally stable. No matter how large the disturbance, it will eventually die 
away (see I). 

(ii) A variational technique which uses the details of the basic motion to be 
studied can be defined and used to extend the region of certain stability. The 
object of these calculations is the specification of the largest region in the 
Rayleigh-Reynolds number plane in which the basic motion is certainly stable. 
The boundary of this largest region is called the optimum stability boundary. 
If (Re, Ra)  lie within the optimum boundary, then the energy of the difference 
motion decays t o  zero as time goes to infinity, and stability (in the mean) is 
rigorously guaranteed (see 11). 

(iii) A general description of the optimum stability boundary in terms of 
maximizing functions of the Euler-Lagrange equations can be constructed. This 
description leads to the result that the Reynolds number is a decreasing function 
of the Rayleigh number, for small Rayleigh numbers, on the optimum stability 
boundary. It also leads to a general a priori criterion for non-existence of sub- 
critical instabilities (see 11). 

(iv) Rigid rotation cannot destabilize the class of flows which satisfy the 
criterion for non-existence of subcritical instabilities (see 11). 

(v) Plane Couette flow heated from below is stable t o  arbitrary disturbances 
when Re2+ Ra < 1708. For Ra = 0 and Re < 41.3, the flow is stable, replacing 
the celebrated value Re = 88-6 given by Orr (1907) (see 11). 

It is our view that energy theory complements linear theory. Linear theory, 
roughly speaking, gives conditions under which hydrodynamic systems are 
definitely unstable. It cannot with certainty conclude stability. Energy theory 
gives conditions under which hydrodynamic systems are definitely stable. It 
cannot with certainty conclude instability. Comparison of the stability limits as 
given by energy and linear theory yields the range of values of relevant stability 
parameters in which subcritical instabilities of the hydrodynamic system are 
possible. 

In  the two parts of this paper we propose to elaborate on the assertion that 
energy methods provide an always mathematically rigorous and a sometimes 
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physically precise theory of subcritical convective instability. We shall restrict 
our attention to those initially quiet motions for which the theory seems physi- 
cally precise. The general formulation of the theory is given in I and 11, but since 
the method and associated criteria are neither conventional nor widely known, 
we have included in part 1 a somewhat longer than usual review of previously 
published work. 

The principal result of part 1 is that a horizontal layer of fluid heated from 
below and internally will not be unstable to arbitrary disturbances for Rayleigh 
numbers which are only slightly less than those given by small perturbation 
theory and which increase from zero with the heat-source intensity. That is, there 
is only a narrow band of Rayleigh numbers for which subcritical instabilities are 
possible. Similar results for convection in spherical shells are obtained in part 2. 
It is shown that no subcritical instabilities are possible in spherical shells when 
the gravity and temperature-gradient variations are identical. Even when sub- 
critical instabilities are possible, they may, as in the cases treated by Chandra- 
sekhar (1961)) be confined to a narrow band of Rayleigh numbers. The important 
implications of these facts and their relation to the often invoked principle of 
exchange of stability are explored in the conclusion of part 2. 

2. Energy identities for the difference motion 

fluids evolve from deductions made from the energy identities? 
The essential elements of the energy method as this is applied to Boussinesq 

= - I ( R e v .  E . v + ,/Ra f . v0 + 2e : e) ,  (1) 

and 

= - I( ,/RaVy!r. vB+ V6 : VB) - $he2. ( 2 )  

Here 9- = V(7) is a region of space (which may change with time t = d27/v) 

occupied by the basic fluid motion; u =V*-V = v ,/(ag~/vP) and B = T *  -T 
are, respectively, the differences of velocity and temperature between the dis- 
turbed (starred) and undisturbed (unstarred) motion; 

(D)ij = i(Vj,j + q, i) = m(~)ij ,  

d = D* - D  = e,/(agK/d2vp)> V T  = PO$ and g(r,7) = gf 

are, respectively, the &rain-rate tensor of the basic and difference motions, the 
gradient of the temperature of the basic fluid motion and the prescribed field 
force (typically, gravity) vector. The constants -m, /3 and g are maximum 
values of the characteristic values of D, V T  and g in the time interval [O,r] 
respectively. The constants K ,  a and v are, respectively, the thermometric coeB- 

t In  writing integrals we shall omit infinitesimal volunie elements; moreover, all 
integrals are understood to be extended over the entire (dimensionless) region, except for 
integrals over 9, the boundary of r ,  which are indicated by a circle drawn through the 
integral sign. 
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cient, the coefficient of thermal expansion and the kinematic viscosity. All 
lengths are measured in units of a fixed reference length d and 

Ra = a p g d 4 / v ~ ,  Re = d2m/v and Pr = V ~ K .  

Consistent with the requirement that the two flows satisfy the same conditions 
at the boundary Y of Y are 

or 
v = 0 (rigid surface, velocity V prescribed), (3) 

(4) 
(E. N) x N = 0, v. N = 0 (free surface, normal velocity V.  N prescribed), 

and a Robin condition 
ae 
--+ha = 0 
aN (5) 

for the temperature. Here N is the outward normal t o y ,  h(r,  r )  2 0 is piecewise 
continuous function of position (Nusselt number), E . N is proportional to the 
viscous part of the surface tractions which are assumed entirely normal. A 
mixture of these conditions may prevail on subelements of 9. 

(1) and ( 2 )  follow from the integration of suitably multiplied differential 
equations (made dimensionless) governing the difference motion over the 
volume V. It is, of course, necessary that the boundary terms which arise 
from application of the divergence theorem vanish; a condition which is assured 
(see 1 and Serrin (1959)) when Y is closed, when the geometry is such that 
disturbances are sufficiently spatially periodic or when the disturbances are 
sufficiently localized. The equations for the difference motion (in physical vari- 
ables) are formed by subtracting the Boussinesq equations for the basic 
(unstarredl flow, 

_ _ - -  dV - '' + (1 - a(T- To)) g+ 2147 .D, 
dt Po 
dT - = KV~T + &(x,  t ) ,  dt (7) 

v.v = 0, (8) 

from the same equations for the disturbed (starred) flow. Here To and &(x ,  t )  are, 
respectively, a prescribed reference temperature and a prescribed heat-source 
function. 

Subsequent deductions about the stability of the difference motion 
extracted from the energy identities (1) and (2), the boundary constraints 
(4) and (5) and kinematic constraint 

divv = 0. 

The local non-linear conservation equations do not play a direct role in further 
construction of the theory. 

Two lines of deduction which start from the energy identities are possible. 
The first of these leads to a criterion for universal stability. The universal 
criterion does not depend on details of the motion or geometry of the basic flow. 
When satisfied, the criterion guarantees asymptotic stability in the sense of an 
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exponential decay of disturbances of any magnitude (see I for details). The 
region of certain stability can, however, be extended by a sharper criterion which 
makes more efficient use of details of the basic flow. This leads to a second line of 
deduction which we call ‘the problem of the optimum stability boundary’. 

The problem of the optimum stability boundary as this is formulated in I1 
consists of finding the largest region in Rayleigh-Reynolds number plane in 
which a given fluid motion is surely stable. In  0 3 below we shall briefly review 
the structure of this problem. It should be stressed that this particular parameter 
emphasis is representative. In  9 4 below a different parameter emphasis is con- 
sidered and the stability boundary is defined in a heat-source parameter N,, 
R,ayleigh number plane. 

3. The problem of the optimum stability boundary 
To begin we introduce a coupling parameter and define an ‘energy’ 

E, = K+hPrO. 

The requirement that this energy be positive is equivalent to the restriction that 
h > 0. We next simplify the problem by introducing another positive parameter 
p(0 ,< p < co) by the relation Re = p JRa. We regard p as preassigned and use it 
to eliminate explicit dependence on the Reynolds number. Introduce the 
notation 

= /(pv.E.v+f.ve), I~ = /v$.ve, 
D = 2Je: e, 9 = /ve. ve + $he2, 

I A  = 1, + hl,, D, = D + h g ,  

and form the inequality 

dE,/d.r -- - - 1 + ,&a( - l,/D,) 6 - 1 + JRa max ( - IJD,) 
D, 

= - 1 + @alp, 
or 

where 

From the inequality (11) one obtains the following result: 
Let the inequalities 

dE,/d.r < - (1 - JRalp) Dh, 
p-l = p-l(h,p) = max ( -l,/D,). 

i a 2 P  6 D(v, v), 
+Prb2J82 6 q o ,  e), 

with a2 > 0, and b2 > 0, hoZd. Then, i f  for any $xed values h > 0 and p 2 0, 
JRa < p(h, p) in the time interval [0 ,  71, we have 

Eh(4 6 E,(O) exp { - (1 - &lp) &), (11)  

where E,(O) is  the initial energy of the difference motion and t2 = min (a2, b2). If 
JRa < p for all r then E,+O, and theJEow is usgmptotically stable in the mean.? 

-f This result, which was derived jointly by Joseph and Serrin (see 11), constitutes a 
firm basis for the maximum problem defining the numbers p-l(h, p) .  It reduces the problem 
of finding limits sufficient for stability t o  a standard problem in the calculus of variations. 
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Proof. Let the assumed inequalities hold. Then 

E, = Sl(v2 + 6 a-2D(v, v) + hb-29(8, 0) < (-2D,, 

which may be combined with (10) to produce 

dE,/d.r < - (1 - ,/Ra/p) D, < - t2( 1 - y‘Ralp) E,. (12) 

This last inequality is then integrated on [0,7], proving (11) and the theorem. 
The hypotheses of the theorem are not very restrictive. It is clear that *a2 is 

the smallest of the eigenvalues associated with the vector Helmholtz equation 
for vand the conditions (3), (4) and (10). The quantity SPr b2 is similarly identified 
as the least eigenvalue of the scalar Helmholtz equation for 8 and the condition 
( 5 ) .  In  nearly all situations encountered in applications, the existence of a 
positive, least-eigenvalue can be assumed and in many instances proved (see I1 
for references). 

Roughly speaking then, stability is guaranteed if ,/Ra < p(A,p). This leads 
naturally to the formulation of a maximum problem for the number l/p. This 
number is to be sought as the maximum value of the expression 

over a field of twice-continuously differentiable functions 8 and v, satisfying 

This maximum problem generates a field of values p(h,p) for each (h,,u) 
parameter pair. Since for each fixed value of p the flow is stable provided only 
that ,/Ra < p(h,p), we may select h so as to give the best possible limit for 
stability. Since this best limit is clearly that for which Ra is largest, we seek the 
largest of the values of p ( h , p )  over h for a fixed p, and define 

(31, (41, ( 5 )  and (9). 

m,u) = maxp(A,p). (14) 
h>O 

N N  

The locus of values R ( p )  gives the optimum stability boundary, a( y‘Ra, Re) = 0, 
parametrically through the equations ,/Fa = R ( p )  and % = ,uR(,u). The value 
of h = A@), which is associated with the maximum p ,  i.e. 

R(P) = P{h(PL), I.> 

is called the best value for the coupling parameter A. If this best value is assumed 
finite, then it may be found as a root of the equation 

It follows that 

and R ( p )  is an envelope of the curves p (const.,p) depending on the parameter 
h = const. 

A summary statement of the structure of the problem may be readily grasped 
from figure 1. In  this figure, I is the region of universal stability. The problem of 
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the optimum stability boundary is posed so as to delineate a larger region of 
certain stability (11) by using the details of the basic motion. The stability 
boundary F( JRa,  Re) = 0 is determined as follows: we first fix p, This determines 
a ray from the origin. A set of maximizing eigenvalues l/p are then found for 
different h and the fixed p. The h which produces the maximum value of p on the 
given ray determines the critical value R(,u). The corresponding critical Reynolds 
number is given parametrically by pR(p) .  The stability boundary P( dRa, Re)  = 0 
is generated as ,u takes on allowed values in the first quadrant. 

” 

N N  

7~ J240 

R d  
FIGURE 1. Stability regions and stability boundary. All flows for which boundary tempera- 
tures and velocities are prescribed and which can be contained in a sphere of diameter d 
are stable in I. By using known details of the basic motion this region is extended to the 

boundary of the largest region, that is, the optimum boundary F( JBa, Re) = 0. Eigen- 
values p(h, p)  lie in the stable regions I and 11; R ( p )  = max p(h, p). 

N N  

h>O 

It should be noted that in the preceding development we have chosen to 
suppress the possible dependence of the system on parameters other than p. 
This is not an essential feature of theory, and these and subsequent remarks 
apply when there are other parameters which characterize the basic state. It is 
precisely these other parameters with which we are concerned in the applications 
which follow. 

4. Generalization and solution of the problem of the optimum 
stability boundary 

The maximum problem (13) is easily formulated in the framework of varia- 
tional calculus. We require that 

- {I l@,  6) + A12(v,6)) = max = l/p(A, p) (17) 
hold for a class of twice-continuously-drentiable functions v and f3 satisfying 
(3), (4), (5) and (9) and the normalizing condition 

D(v,v)+AB(8,8) = 1. (18) 
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Lagrange multipliers R, and P(z ,  y, x ,  t )  are then introduced, and (17) ,  (3), (4), 
(5), (9) and (18) are reformulated in a system of partial differential equations 
by requiring 

(19) I 2P 1 
I1(V) 0) + h12(V, 6') -__ v. v +- (D(v, v) + h9((8,0)) = 0. 

P A  R, 

The Euler-Lagrange equations corresponding to (19) are 

& ( R , / ~ A )  (hv$ + f )  . v = v2e, (20) 

iU,R,v.E++R,(hV$+f)B = -Qp+V2v,  (21) 

which are to be solved subject to (3), ( 4 ) )  ( 5 )  and (9). It is easy to establish that 
for any normalized solution of the Euler-Eagrange equations and side conditions 

- I1(v, 6') - h&(v, 6') = l/R,. ( 2 2 )  

A A P )  = minR,(lU) (23) 

Hence it follows that the values 

for any of the positive set of eigenvalues R,. Also 

Given the solutions to the maximum problem, i.e. the numbers p-'(h,p) and 
the corresponding eigenfunctions 5, 8, the problem of finding the best value for 
the coupling parameter h and the associated stability boundary may be easily 
resolved (see 11). The technique used to resolve this problem yields the result 
that If .aB 

/V$ . BB' 
A=- (35) 

This result is independent of the nature of the basic state, and applies not only 
when the system dependence on parameters other than the Rayleigh and 
Reynolds number is suppressed, that is, when h = A(p), but also generally. 

(25 )  is a direct consequence of the following relation: 

/T . S(pJk). B + &JSG,. a0 = - s( &p) - ( jA"ip) $ 8 8 2 ,  (26) 

where G, = AV$ + f .  For suppose that the h which gives p its maximum value is 
finite, and the system depends on parameters ai. Then the best values of A will 
be found as a root of t.he equation 

which implies, through ( 2 6 ) ,  that 

pp . E . B + 2AlV$. ss = - l /R (p ,  ai). 

One compares this with the maximum problem (13) to produce ( 2 5 ) .  
( 2 5 )  is particularly valuable for estimating the best value of A, when it is not 

possible to do this from a pyiori considerations. We shall demonstrate this 
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repeatedly in the applications which follow. When f = Vy9 then h = 1, a fact 
which makes it possible to exclude the possibility of subcritical instabilities for 
a wide class of basic motions starting from rest (see 11). 

The solution of the problem of the best coupling parameter is but one applica- 
tion of (26). A number of interesting deductions, particularly how these bear 
upon the problem of finding the optimum stability boundary, may be made from 
(26). (See I1 and 0 5.) 

It remains then to establish (26). First change variables so that 6 = $I&, 
then consider two different solutions of the Euler-Lagrange equations and 
identify them with subscripts. Thus v1 = 0, and 6, = g, satisfy the Euler- 
Lagrange equations for R,, A,, el, V@,, fJ and h,. Equations (20) and (21) written 
for subscript one are multiplied by #2 and Vz, respectively, and integrated 
over V .  This procedure is repeated with the subscripts exchanged. In this way 
we are led to the four equations ( j  = 1, i = 2 ,  a n d j  = 2 ,  i = I )  

+J(hjV$+f)*vj+i = -(hj/Rj) g($i)#j)> (28) 

/lj JhjJvj. ej  .vi + &J(hjV$+ f )  . vi$j = - ( .\/hj/Rj)D(vj, vi), (29) 

where Ri = p(hi,pi ,  hi, ...). A linear combination of the equations can then be 
made to produce 

J v ~ . ( P ~  J h 2 ~ 2 - ~ 1 2 j h i ~ i ) . ~ 2 + 4 J  G A 2 - G A 1 )  (vz#Ji+v+2) 
= - (&2/& -44/X1) (W,, v2) + w 1 9  $2)) 

-$(hz&2/R2-h1 &i/RJ (30) 

Now let the solutions coalesce and use $ = 0 Jh (18) and (27) to produce (26). 

5. On the destabilizing effect of the Robin condition 
As a first application of the general theory, we investigate the effect of the 

Nusselt number (h) on the stability limits. For simplicity we fix the distribution 
f(r) of h = Nzcf(r) but allow the magnitude N u  to vary. It will be recalled that 
h enters the problem through the Robin condition 

aO/aN+Nuf(r)O = 0 (0 +f(r) 2 0 ) ,  

on the temperature of the difference motion. The limits Nu+ 0, N u  -+ co imply, 
respectively, a prescribed heat flux or a prescribed temperature on the boundary 
Y of 9". The prescribed temperature condition, like the prescribed displacement 
condition for vibrating systems, is most restrictive or, in other words, most 
stable. This fact has been abundantly verified by exact calculation from the 
linear equations (Sparrow, Goldstein & Joiisson 1964, Sani 1963) and is here 
recovered, for the non-linear case, as an easy application of (26). 

Consider that all basic-state parameters except N u  are fixed and determine 
the effect of N u  on the stability limit R(Nu).  The Nusselt number now plays a 
role analogous to  the Reynolds number in 3 2. In particular (25) for the best h is 
valid as is found from the requirement that 
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(32) 
dR(Nu) +(A, Nu) ah + +(A, N u )  ____- - 

dNu ah  NU aivu 

This last partial derivative is easily formed from (26) as 

-- dR(Nu) - hR$f(r)82 > 0. 
dNu (33) 

It follows that the stability limit R (Nu)  increases monotonically with the Nusselt 
number. 

We observe that when Nu is large, the Robin condition will ordinarily force 
a large normal derivative anda relatively small value of B on 9. Then the equation 

~ = -~ 
ZNu hR f a @  dR(Nu) 

dNu 

will imply very slow changes of stability limit as the Nusselt number is decreased 
through very large values. 

We also note that in many cases this last conclusion is valid for local perturba- 
tions of steady solutions of the Boussinesq equations. When p = 0 and f = V+, 
the Euler-Lagrange equations coincide with the linear perturbation equations 
with partial time derivatives set to zero (see 11). This implies that no subcritical 
instabilities exist, and conclusions drawn from the energy method are sufficient 
for instability as well as stability. It follows, that for these cases less than perfect 
control of the thermal boundary condition will not introduce great error into 
experimental results which purport to verify stability limits for the prescribed 
temperature case (cf. Sani 1963). 

Our next application of energy theory bears directly on the question of sub- 
critical instabilities. It is to this question that we now turn. 

6. Subcritical convective instability in fluid layers 
In  this section we apply the theory to obtain stability limits for transversally 

infinite fluid layers heated from below and internally. We shall assume that the 
initially quiet fluid layer is bounded above and below by rigid plates, and we 
locate the co-ordinate origin at the lower plate. The distance between plates is 
unity (measured in units of d). The unit vector i points in the direction of z 
increasing, and V$ = i d$./dz and f = - i. Under stated conditions (20) and (21) 
may be written as 

When d$/dz = - 1, h = 1 (equation (25)) then (34) and (35) coincide with the 
classical Rayleigh-Jeffrey's problem. No subcritical instabilities exist even when 
the problem is generalized to include the Robin condition on the temperature 
(see 11). 
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In  the present application the distribution of temperature in the quiet state 
differs from linearity by virtue of a distribution of internal heat sources, which, 
for ease of comparison with known results of linear theory (Sparrow et al. 1964), 
is taken as uniform across the channel. 

The temperature distribution corresponding to circumstances specified above 
is T = - ~ ( s / K ) x ~  + Ax3 + B, 

where s is the internal heat-source intensity, and K is the thermal conductivity. 
This may be written in non-dimensional variables as 

T-T2 -- - N,(Z - 2 2 )  + (1 - z ) ,  
T1- T2 

where TI and T2 are the temperatures of the bottom and top plate respectively, 
z = x,/d and N, = isd2/K(Tl- T,) is a heat-source parameter considered positive, 
i.e. restricted to cases for which Tl > T2. From (36) 

and with 

we obtain 
1 dT 2N,( 1 - z )  

1. 3 = _ _  = 
dz Pdx,  N,+ 1 (37) 

For easy comparison with known results of linear theory, we have stated our 
results in terms of a Rayleigh number 

N 

Our critical value is designated as RA. The critical value of linear theory is 
called RA,. We next use (37), (38) and the variable q5 = 4A19 to rewrite (34) and 
(35) as 

These are to be solved subject to a prescribed temperature condition 

q5(0) = W) = 0 

and a solenoidal velocity vanishing at z = 0 , l .  
We next assert that on the optimum stability boundary - 1708 

RA 2 ___ 
N,+  1 ‘  

Stated in another way stability is guaranteed when 

1708 
R A G -  &+ 1 ’  
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The estimates (41) and (42) follow as a simple consequence of (26), which in 
the present context has the form 

N 

Also, when p = R = ,/Ra and h = h(Ns) (see ( 2 5 ) ) ,  

The condition for the best h = h(Ns)  implies that 

which is easily evaluated from (43) as 

Jh dR 
R2 dN, 

We next divide (45) by (44) and use f = - i and 

h j(1-464 -~ ___ 1 dR 
RG- ( N , + 1 ) 2  pj4 - to obtain 

The formula (25) for the best h has the form 

implying that 

N 

Use (47) in (46) and multiply the resulting equation by R2 = Ra to produce 

- R2, CtZa - Za(h -1 )  
dN, ( N , + l ) N s - T  

- 

dR2 - RI (A-1 I) 
dNs N,+ 1 N, 

or 

Of course h = h(N,) and is not known explicitly. Nevertheless, 

d log RA - = ~ - l)dlog (N,+ 1 )  -dlog (N,+ 1) 
N, 

may be integrated from the known point (R2,N,) = (1708,O) to obtain 

(45) 

(47) 

Equation (41) follows easily from (49) under the assumption that h - 1 > 0, as 
is strongly suggested by (47) and (44). 
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Equation (49) is an exact result. It implies not only the estimate (41) but also 
the exact limits 

In  figure 2 we have compared the estimate (41) with the exact solution, 
obtained numerically by the Runge-Kutta-Gill method (Harris & Reid 1964, 
Sparrow 1964). This method is applied to the equations 
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FIGURE 2. The optimum stability boundary compared with an a priori estimate. 

where w and 6 are amplitudes and k the overall wave-number of the (periodic) 
normal velocity and temperature disturbances. Equations (50) and (51) follow 
easily upon substitution of a normal mode proportional to exp (ikz x + i k ,  y) into 
(39) and (40). They are to be solved for the conditions 

w = D w = # = O  a t  z = O , l .  ( 5 2 )  

The problem defined by (50), (51) and (52 )  is a classic eigenvalue problem. We 
here regard R, as the eigenvalue. In general, the values of R, for which non- 
trivial solutions exist depend on the other parameters so that 
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N 

JRa < R, = min. R,. 
k> 0 

(53) 

The best value for his that which gives the best stability limit, i.e. the largest RA . 
Hence, rv 

JRa = max. min. R,. 
A>O k>O 

(54) 

The field of minimum values &is generated by the Runge-Kutta-Gill method. 
This procedure is fairly standard and is briefly discussed in part 2 of this paper 

i '"""111 / ,N,=IO i \ 

It1 / ,-Ns=40 ! 

I 
I I I I 4 

0 1 2 3 4  5 6  7 8 9 1 0  

A 

FIGURE 3. The optimum stability boundary as the loci of the best value of the coupling 

parameter h. -, Ri(h, Ns) / (Ns+  1); ----, RA(h, Ns) ,  the locus of the maxima of the 

curves giving Ri / (Ns+  1). 

N 

N 

and in the cited references. The critical Rayleigh number is extracted from this 
field by numerical searching for the maxima required by (54). Figures 3 and 4 
give the result of this search. 

Before turning toa descriptionof theresults, we should like to remark upon the 
usefulness of the equation for the best h in approximating the best value for an 
initial guess at  a solution for (54). From (47) we find 

where (w$)+ and (w$)f are mean values as defined by the first mean-value 
theorem of integral calculus. Alternately, if W $  is assumed to be one-signed on 

( 5 6 )  
1 2% ;i 

h NS + 1 +-, 
(07 1), 

- = I---- 
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where Z is a mean value (0 < Z < 1). When N, = 0, h = 1. As N,+cQ, h tends to 
a limiting value independent of N,. The result, which is suggested by (55) and 
(50), is borne out by the numerical results. These show that for AT, > 10, X 1: # 
and A 2: 4.2. 
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FIGURE 4. Heated from below with internal heat sources. 

N, k RAC RUA 
0 3.12 1708 1708 
0.25 3.12 1707 1706 
2.5 3.18 1633 1545 

10 3.53 1118 896 
40 3.86 409 305 

100 3.94 180 130 

TABLE 1. Values of parameters for critical Rayleigh numbers of linear and 
energy theory 

In  figure 3 we have sketched (solid line) the variation of .f@/(N,+ 1) with h as 
the variable and A?, a parameter. The dotted line is the locus of the 'best ' values 
of h over the range of N, values. This is the locus R2(Ns)  which defines the values 
of RA below which arbitrary disturbances certainly decay. 

In figure 4 and table 1 we have compared the locus RA,(N,) (Sparrow et al. 
1964), which defines a boundary above which the given flow is certainly unstable, 
with the locus EA((N,), which defines a boundary below which a given flow is 
certainly stable. The region between these boundaries is potentially open to sub- 
critical instabilities. 

N 
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It will be observed that the difference between RA,(N,) and R2(Ns)  increases 
monotonically from zero, when Ns = 0, to a finite but not large difference, as 
K,+co. 

The work of parts 1 and 2 was supported in part by NASA grant (NGR-24- 
005-065) to the Space Science Centre of the University of Minnesota. 
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